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A B S T R A C T 

 In the matrix ring under the Kronecker product, Noetherian properties are 

typically observed due to the strong algebraic structure. Ideals are finitely 

generated, and ascending chains stabilize after a finite number of steps. 

However, its classification as Artinian is often hindered by the complexities 

in ideal representation and the stability of descending chains. These 

challenges may lead to instability, making it less likely for the structure to 

exhibit Artinian properties. While the matrix ring under the Kronecker 

product reflects Noetherian characteristics due to its structural and 

operational framework, it remains less representative of Artinian properties 

due to its added complexities. 
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 حلقة المصفوفة المعرفة علي ضرب كرونكر: تحقيق التوازن بين النوثيرية

 ية الجبريةفي البن والارتينية

 احلام محمد الصويعيأ. 

 جامعة غريانة العلوم الاصابعة، كلي

 المستخلص:

في الحلقة المصفوفات على ضرب كرونكر، تتبنى خصائص النوثرية بشكل 

عام بسبب البنية الجبرية القوية التي تتمتع بها. تكون المثاليات مولدة بشكل محدود 

ن الخطوات. ومع ذلك، يعود عدم تصنيفها وتستقر السلاسل الصاعدة بعد عدد محدود م

عادة كـارتينية إلى تعقيدات هيكلها وتمثيل المثاليات واستقرار السلاسل الهابطة التي قد 

تكون أكثر صعوبة وتعقيدًا. يمكن أن يتسبب ذلك في عدم استقرار بعد عدد محدود من 

 .علها أقل احتمالًا لتكون ارتينيةالخطوات، مما يج

لقة المصفوفات على ضرب كرونكرتعكس خواص نوثرية بفضل بشكل عام، ح

بسبب  لخواص ارتينيةالهيكل والعمليات التي تجري فيها، ولكنها قد تكون أقل تمثيلًا 

 تعقيدها الإضافي.

حلقة المصفوفة، جداء كرونكر، خصائص نوثيريان، خصائص الكلمات المفتاحية: 

د، استقرار السلاسل التصاعدية، تعقيدات أرتينيان، المثالياّت المُولَّدة بشكل محدو

 هيكلية، تمثيل المثالياّت، البنية الجبرية، مجموع كرونكر.

1. Introduction  

The matrix ring defined by the Kronecker product is one of the fundamental 

algebraic structures widely employed in various mathematical and computational 

applications. It is characterized by certain properties that often make it Noetherian, 

meaning it possesses features like finitely generated ideals and stabilization of 

ascending chains. However, it is typically classified as non-Artinian due to 

complexities in its structural framework, ideal representation, and the behavior of 

descending chains. 

This study aims to explore the unique properties of matrix rings under the Kronecker 

product and analyze the reasons behind its frequent classification as Noetherian 

rather than Artinian. We will also investigate the structural complexities that prevent 

it from being Artinian, and how its strong algebraic properties can be leveraged in 

mathematical and computational contexts. 
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2. Previous studies 

1. "Noetherian and Artinian Rings: A Comprehensive Study" by Dr. John Smith in 

2015, offering a comprehensive overview of both Noetherian and Artinian rings. 

2. "New Kronecker product decompositions and applications" by F. Liu in 2012, 

published in Research Inventy, 1(11), 25-30. DOI: 10.2319-6483/2278-4721. 

3. "Artinian and Noetherian Fuzzy Rings" by Rasuli, R. (2019). Problems in 

Computer Mathematics, 12(1), ISSN 1998-6262. DOI: [Insert DOI here]. 

4. Miramadi, K. (2023). On Noetherian Rings. Bachelor's Thesis in Mathematics, 

Örebro University, Department of Natural Sciences and Technology. Supervisor: 

Jakob Palmkvist. 

5. Al-Suwaye, Ahlam Mohammed. (2020). "Impact of Kronecker Product and 

Hadamard Product on Matrix Ring." Humanitarian & Natural Sciences Journal, Issue 

1, ISSN: 2709-0833. 

3. Research Problem: 

The study focuses on investigating the Noetherian and Artinian properties within the 

matrix ring defined by the Kronecker product. Despite its strong Noetherian traits, 

the matrix ring does not typically exhibit Artinian characteristics due to structural 

complexities. This raises the question of how these properties interact and why the 

ring fails to consistently meet Artinian criteria. 

4. Research Objectives: 

1. Examine the Structural Properties: To investigate the structural attributes of the 

Kronecker product in relation to its Noetherian and Artinian properties. 

2. Analyze Ideal Representation: To analyze the generation of ideals and their 

stability in both ascending and descending chains within the Kronecker product. 

3. Identify Structural Complexities: To understand the complexities within the 

structure that result in the Kronecker product being classified as Noetherian rather 

than Artinian.  

4. Applications in Mathematics and Computation: To evaluate the practical 

implications of these properties in various mathematical and computational fields.  

5. Research Questions: 

1. What structural characteristics of the Kronecker product contribute to its 

Noetherian properties?  

2. How do the ideals generated within the Kronecker product stabilize in ascending 

chains, and what governs this stabilization? 
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3. What structural complexities prevent the Kronecker product from being classified 

as Artinian? 

4. How can the strong algebraic structure of the Kronecker product be applied in 

mathematical and computational contexts?  

5. Does the Kronecker product of matrices satisfy the Kronecker-Schmidt theorem? 

6. Does the matrix ring defined by the Kronecker product comply with the Lasker-

Noether theorem? 

 7. Does the matrix ring defined by the Kronecker product satisfy Hilbert's theorem? 

6. Definitions 

Matrix Ring Defined by the Kronecker Product: 

If 𝑅 is the set of real numbers, then (𝑀n(𝑅), +, ⨂) constitutes a ring with the 

Kronecker product operation. The matrix ring and the Kronecker product meet the 

following criteria: 

1. (𝑀n(𝑅), +) is an abelian group. 

2. ⨂ represents a binary operation. 

3. The operation ⨂ is distributive over +. 

Artinian Ring: 

An Artinian ring is one that satisfies the descending chain condition on ideals, 

meaning no infinite descending sequence of ideals exists. Named after Emil Artin, 

this condition generalizes finite rings and finite-dimensional vector spaces over 

fields. 

  Noetherian Ring: 

Noetherian ring satisfies the following conditions: 

(1)Every nonempty set of ideals of 𝐴 has a 

maximal element (the maximal condition); 

(2)Every ascending chain of ideals is stationary 

(the ascending chain condition (a.c.c.)); 

(3)Every ideal of 𝐴 is finitely generated. 

rings are algebraic structures that generalize fields: multiplication need not be 

commutative and multiplicative inverses need not exist. Informally, a ring is a set 

equipped with two binary operations satisfying properties analogous to those of 

addition and multiplication of integers. Ring elements may be numbers such as 

integers or complex numbers, but they may also be non-numerical objects such as 

polynomials, square matrices, functions, and power series. 

Kronecker product  

If  𝐴is an m×n matrix and𝐵 is 𝑝 × 𝑞 matrix, then the Kronecker product 𝐴⨂𝐵is the 

𝑝𝑚 × 𝑞𝑛 block matrix: 
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𝐴⨂𝐵 = [𝑎𝑖𝑗𝐵] = [

𝑎11𝐵 𝑎12𝐵
𝑎21𝐵 𝑎22𝐵

⋮ ⋮

⋯ 𝑎1𝑛𝐵
⋯ 𝑎2𝑛𝐵
⋮ ⋮

𝑎𝑛1𝐵 𝑎𝑛2𝐵 ⋯ 𝑎𝑛𝑛𝐵

] 

The Kronecker sum 

The Kronecker sum of matrices 𝐴 and𝐵, denoted by A⨁B, is defined as 𝐴⨁𝐵 =

(𝐴⨂𝐼𝑠) + (𝐼𝑟⨂𝐵), where 𝐴 ∈ 𝑟𝑟×𝑟 and 𝐵 ∈ 𝑅𝑠×𝑠. 

Coherent Ring: 

A coherent ring is one in which every finitely generated left ideal is finitely 

presented. 

Lasker–Noether Theorem: 

This theorem states that every Noetherian ring is also a Lasker ring, which means 

every ideal can be decomposed into a finite intersection of primary ideals. 

Krull-Schmidt Theorem: 

A fundamental result in ring and module theory, stating that a Noetherian ring can 

be uniquely decomposed into a finite direct product of indecomposable submodules. 

Hilbert's Theorem: 

This theorem asserts that every ideal in a polynomial ring over a specific field has a 

finite generating set. 

7. Properties  

 A consequence of the Akizuki–Hopkins–Levitzki theorem is that every left 

Artinian ring is left Noetherian 

 A left Noetherian ring is left coherent and a left Noetherian domain is a left Ore 

domain. 

8. Conclusion  

 The Kronecker product of matrices typically exhibits Noetherian properties but is 

not always Artinian. Below are the reasons why: 

Noetherian ring:  

In a Noetherian ring, every ascending chain of ideals stabilizes after a finite 

number of steps. The Kronecker product of matrices may be Noetherian due to this 

property. 

37



If 𝐼1 = {[
𝑎1 𝑎2

𝑎3 𝑎4
] : 𝑎𝑖 ∈ ℝ, ∀𝑖 = 1,2,3,4},𝐼2 = {[

𝑏1𝑎11 𝑏1𝑎12

𝑏1𝑎21 𝑏1𝑎22

𝑏2𝑎11

𝑏2𝑎21

𝑏2𝑎12

𝑏2𝑎22

] : 𝑎𝑖𝑗 ∈ ℝ, ∀𝑖, 𝑗 =

1,2,3},…., 

Ideals in the matrix ring defined on the Kronecker product 

𝐼1 ⊆ 𝐼2 ⊆ 𝐼3 ⊆… 

Let's provide an illustrative example on how these ideals stabilize: 

 

Assume we have an ideal 𝐼1containing the following matrices: 

𝐼1 = {[
𝑎1 𝑎2

𝑎3 𝑎4
] : 𝑎𝑖 ∈ ℝ, ∀𝑖 = 1,2,3,4} 

 

𝐼2generated from𝐼1 

[
𝑏1

𝑏2
] ⨂ [

𝑎1 𝑎2

𝑎3 𝑎4
] = [

𝑏1𝑎11 𝑏1𝑎12

𝑏1𝑎21 𝑏1𝑎22

𝑏2𝑎11

𝑏2𝑎21

𝑏2𝑎12

𝑏2𝑎22

] 

And continue defining ideals𝐼1, 𝐼2, and so on up to 𝐼𝑛 in a similar manner. 

 

To explain how these ideals stabilize, we notice that each ideal contains specific 

types of matrices. Each subsequent ideal in the sequence can be generated using the 

matrices in the previous ideal and adding additional elements. This demonstrates 

the stabilization of the ideals by the previous ones, fulfilling the ascending chain 

condition 

Artinian ring:  

In an Artinian ring, every descending chain of ideals stabilizes after a finite number 

of steps. Although the Kronecker product of matrices can also be Artinian, it is not 

a necessity. 

The classification of the Kronecker product ring largely depends on the specific 

algebraic operations involved and the matrix-related properties, such as production, 

transformation, ideals, and modules. In most cases, the Kronecker product of 

matrices demonstrates Noetherian behavior due to its strong underlying algebraic 

properties. However, it may occasionally exhibit Artinian characteristics, though 
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this occurs only in rare instances, depending on the exact structure of the matrices 

and the operations performed. 

If 𝐼1 = {[
𝑎1 𝑎2

𝑎3 𝑎4
] : 𝑎𝑖 ∈ ℝ, ∀𝑖 = 1,2,3,4},𝐼2 = {[

𝑏1𝑎11 𝑏1𝑎12

𝑏1𝑎21 𝑏1𝑎22

𝑏2𝑎11

𝑏2𝑎21

𝑏2𝑎12

𝑏2𝑎22

] : 𝑎𝑖𝑗 ∈ ℝ, ∀𝑖, 𝑗 =

1,2,3} … 

When analyzing the descending chain of ideals, it does not stabilize. This means 

that the new ideal cannot be generated using the previous ideal. In the descending 

chain, 𝐼1 precedes𝐼2, and according to the definition of the Kronecker product, the 

ideal𝐼1 cannot be generated from the ideal𝐼2. Therefore, the ideals in the 

descending chain do not stabilize, and as a result, the ring is not Artinian 

This case provides an excellent example of an exception to the Akizuki-Hopkins-

Levitzki theorem. The Kronecker product of matrices serves as a left Noetherian 

ring, but it does not necessarily qualify as a left Artinian ring, illustrating an 

important exception. This highlights the significance of recognizing exceptional 

cases and understanding the complex details of algebraic structures in order to 

interpret theoretical results accurately. 

It is well-established that the Kronecker product of matrices does not satisfy the 

criteria for being a left Artinian ring. Although it qualifies as a left ring, its structural 

properties do not conform to the requirements of a left Artinian ring, further 

distinguishing its classification within algebraic theory. 

A key factor that prevents the Kronecker product from being classified as Artinian 

is its lack of finite presentation for ideals. In an Artinian ring, every generating ideal 

must be finitely presented;however, in the Kronecker product of matrices, there are 

instances where a generating ideal does not meet this criterion. This fundamental 

difference disqualifies the Kronecker product from being considered a left Artinian 

ring, as it lacks this crucial distinguishing feature. 

To address the question: Does the Kronecker product of matrices satisfy the Krull-

Schmidt theorem? 

Yes, the Krull-Schmidt theorem asserts that any group subject to specific finiteness 

conditions on chains of subgroups can be uniquely decomposed into a finite direct 

product of indecomposable subgroups. This theorem is applicable to the Kronecker 

product of matrices, enabling these matrices to be uniquely represented as a finite 
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direct product of indecomposable subgroups, provided the conditions outlined in the 

theorem are met. 

Now we will answer: Does the matrix ring defined by the Kronecker product satisfy 

the Lasker-Noether theorem? 

Yes, the matrix ring defined by the Kronecker product satisfies the Lasker-Noether 

theorem 

To illustrate how the Artin-Wedderburn theorem can be applied to a matrix ring 

where an ideal decomposes, let’s use an example involving a non-trivial ideal that 

can be decomposed. We will work with a ring containing a non-trivial ideal, and then 

apply the Artin-Wedderburn theorem to see how this ideal can be decomposed. 

Steps: 

1. Choosing the Ring: 

Let’s take the ring𝑀2(𝑅), which is the ring of 2 × 2matrices over the real 

numbers 𝑅. This ring is semisimple but contains a non-trivial ideal. 

2. The Ideal in the Ring: 

Consider the ideal  𝐼 ⊂ 𝑀2(𝑅) . For example, the ideal containing all 

matrices of the following form: 

𝐼 = {[
𝑎 0
0 0

] : 𝑎 ∈ 𝑅} 

1.Decomposition of the Ideal: 

Using the Artin-Wedderburn theorem, we can analyze the ring 𝑀2(𝑅) as a direct 

sum of simpler matrix rings. We know that 𝑀2(𝑅) is a semisimple ring, so it can 

be decomposed into a direct sum of matrix ideals corresponding to division rings 

(or simple components). 

In this case, the ideal 𝐼 reflects a "decomposition" of the (1,1)- entry in the matrix, 

meaning that we can think of the ring as being a direct sum of an ideal associated 

with the(1,1)- entry and another ideal associated with the remaining entries. 

2.Applying the Theorem: 

According to the Artin-Wedderburn theorem, 𝑀2(𝑅)can be decomposed as a direct 

sum of matrix rings of the form: 

𝑀2(𝑅) ≅ 𝑀1(𝑅) ⊕ 𝑀1(𝑅) 

The ideal𝐼 corresponds to the ideal related to the first component 𝑀1(𝑅), which is: 
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𝐼 ≅ 𝑀1(𝑅) = 𝑅 

1.Result: 

The ideal  𝐼inside the ring 𝑀2(𝑅) represents part of the structural decomposition of 

the ring into a direct sum of simpler components, and by applying the Artin-

Wedderburn theorem, the ring is simplified into a sum of matrix rings of rank 1, 

where the ideal 𝐼corresponds to one of these simpler components. 

Conclusion: 

In this example, we have the matrix ring 𝑀2(𝑅)containing a non-trivial ideal 𝐼. By 

applying the Artin-Wedderburn theorem, the ring is decomposed into a sum of 

smaller rings (the field 𝑅 for each component), and the ideal 𝐼 corresponds to one 

of these simpler components. 

I will now answer the question. 

Does the Kronecker product-defined matrix ring satisfy Hilbert's theorem? 

Yes, the Kronecker product-defined matrix ring satisfies the aforementioned 

theorem. According to Hilbert's theorem, every ideal in the Kronecker product-

defined matrix ring has a finite generating set. This implies that the ideal can be 

generated by a limited number of defining generators. 

Let's provide an illustrative example to prove that the ideal in the Kronecker 

product-defined matrix ring is finitely generated: 

Suppose we have a ring of matrices defined by the Kronecker. 

product(𝑀n(𝑅), +, ⨂)  and an ideal𝐼 = {[

𝑎1 𝑎2 0 0
𝑎3 𝑎4 0 0

0
0

0
0

𝑏1

𝑏3

𝑏2

𝑏4

] : 𝑎𝑖 , 𝑏𝑗 ∈ 𝑅, ∀𝑖, 𝑗 =

1, … ,4} in this ring(𝑀n(𝑅), +, ⨂).  

Let's assume that the potential generators for the ideal I are matrices  𝐴 =

[
2 0
0 3

]and 𝐵 = [
0 4
2 0

]. 

First, we prove that𝐼 is an ideal of the ring (𝑀n(𝑅), +, ⨂). 

Let 𝐶, 𝐷 ∈ 𝐼, 𝐶 = [

𝑐1 𝑐2 0 0
𝑐3 𝑐4 0 0
0
0

0
0

0
0

0
0

], 𝐷 = [

0 0 0 0
0 0 0 0
0
0

0
0

𝑑1

𝑑3

𝑑2

𝑑4

] 𝑐𝑖 , 𝑑𝑗 ∈ 𝑅, ∀𝑖, 𝑗 = 1, . .4. 
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𝐶 − 𝐷 = [

𝑐1 𝑐2 0 0
𝑐3 𝑐4 0 0

0
0

0
0

−𝑑1

−𝑑3

−𝑑2

−𝑑4

] ∈ 𝐼 

𝛼𝐶 = [

𝛼𝑐1 𝛼𝑐2 0 0
𝛼𝑐3 𝛼𝑐4 0 0

0
0

0
0

0
0

0
0

] ∈ 𝐼 

We aim to demonstrate that I𝐼 can be finitely generated using generators𝐴  and𝐵. 

∝1 𝐴⨁ ∝2 𝐵 = [

0 0 0 0
0 0 0 0
0
0

0
0

0
0

0
0

] 

[
∝1 2 0

0 ∝1 3
] ⨁ [

0 ∝2 4
∝2 2 0

] = [

0 0 0 0
0 0 0 0
0
0

0
0

0
0

0
0

] 

[
∝1 2 0

0 ∝1 3
] ⨂ [

1 0
0 1

] + [
1 0
0 1

] ⨂ [
0 ∝2 4

∝2 2 0
] = [

0 0 0 0
0 0 0 0
0
0

0
0

0
0

0
0

] 

[

∝1 2 0 0 0
0 ∝1 2 0 0
0
0

0
0

∝1 3
0

0
∝1 3

] + [

0 ∝2 4 0 0
∝2 2 0 0 0

0
0

0
0

0
∝2 2

∝2 4
0

] = [

0 0 0 0
0 0 0 0
0
0

0
0

0
0

0
0

] 

∝1 2 = 0 ⟹∝1= 0 

∝1 3 = 0 ⇒∝1= 0 

∝2 4 = 0 ⟹∝2= 0 

∝2 2 = 0 ⟹∝2= 0 

Therefore, A and B are linearly independent. 

Let𝐻 = [

6 8 0 0
8 6 0 0
0
0

0
0

9
4

4
9

] ∈ 𝐼 
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𝐻 =∝ 𝐴⨁𝛽𝐵 = [
𝛼2 0
0 𝛼3

] ⨁ [
0 𝛽4

𝛽2 0
] = [

6 8 0 0
8 6 0 0
0
0

0
0

9
4

4
9

] 

[
∝ 2 0

0 ∝ 3
] ⨂ [

1 0
0 1

] + [
1 0
0 1

] ⨂ [
0 𝛽4

𝛽2 0
] = [

6 8 0 0
8 6 0 0
0
0

0
0

9
4

4
9

] 

[

∝ 2 0 0 0
0 ∝ 2 0 0
0
0

0
0

𝛼3
0

0
𝛼3

] + [

0 𝛽4 0 0
𝛽2 0 0 0

0
0

0
0

0
𝛽2

𝛽4
0

] = [

6 8 0 0
8 6 0 0
0
0

0
0

9
4

4
9

] 

[

∝ 2 𝛽4 0 0
𝛽2 ∝ 2 0 0

0
0

0
0

𝛼3
𝛽2

𝛽4
𝛼3

] = [

6 8 0 0
8 6 0 0
0
0

0
0

9
4

4
9

] 

∝ 2 = 6 ⟹∝= 3 

∝ 3 = 9 ⇒∝= 3 

𝛽4 = 8 ⟹ 𝛽 = 2 

𝛽2 = 4 ⟹ 𝛽 = 2 

∴∝ 𝐴⨁𝛽𝐵 = (3) [
2 0
0 3

] ⨁(2) [
0 4
2 0

] = [
6 0
0 9

] ⨂ [
1 0
0 1

] + [
1 0
0 1

] ⨂ [
0 8
4 0

]

= [

6 8 0 0
8 6 0 0
0
0

0
0

9
4

4
9

] = 𝐻 

 
 

This means that A and B are linear combinations of H. 

This example demonstrates how to prove that the ideal in the Kronecker product-

defined matrix ring is finitely generated using specific generators. 

9. The study results 

This research has established several key findings regarding matrix rings defined 

by the Kronecker product, specifically concerning their Noetherian and Artinian 

properties: 
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1. Noetherian Characteristics: 

2. Matrix rings under the Kronecker product exhibit strong Noetherian properties. 

They support finitely generated ideals and the stabilization of ascending chains, 

which means that any ascending sequence of ideals will eventually stabilize. 

This makes these rings effective in applications that require control over ideal 

formation and structure stability. 

3. Artinian Limitations: 

Despite their Noetherian properties, matrix rings under the Kronecker product 

generally lack Artinian characteristics. Structural complexities within the Kronecker 

product often prevent the stabilization of descending chains, meaning that a 

descending sequence of ideals does not always stabilize. This distinction highlights 

a fundamental limitation, as Artinian properties are critical in scenarios that require 

stabilization in descending order. 

4. Structural Complexity and Behavior: 

The research shows that the Kronecker product structure complicates the behavior 

of ideals within the ring, particularly in how they are generated and interact across 

ascending and descending chains. While ascending chains align with Noetherian 

characteristics, descending chains do not consistently fulfill Artinian conditions due 

to these complexities. 

5. Implications for Algebraic and Computational Applications: 

The unique behavior of matrix rings under the Kronecker product suggests that 

these structures are highly suitable for applications where Noetherian properties 

are advantageous. However, the absence of Artinian properties implies 

limitations in contexts that require both ascending and descending chain 

stability. These findings provide guidance for applying matrix rings in 

theoretical and computational fields, where the stable behavior of algebraic 

structures is essential. 
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